

Name: _____

Beispielaufgabe Abiturprüfung

(auf Grundlage des neuen Kernlehrplans vom 01.08.2023)

Mathematik, Grundkurs

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Aufgabenstellung:

Gegeben sind die in *IR* definierten Funktionen *f* und *t* mit den Gleichungen

$$f(x) = \frac{1}{8} \cdot x^3 - \frac{3}{2} \cdot x^2 + \frac{9}{2} \cdot x$$
 und $t(x) = -\frac{3}{2} \cdot x + 8$.

Der Graph von *f* wird mit *G* bezeichnet.

- a) (1) Berechnen Sie die Koordinaten und die Art der Extrempunkte von G.
 - (2) W(4|f(4)) ist der Wendepunkt von G.
 Weisen Sie rechnerisch nach, dass der Graph der Funktion t die Tangente an G im Punkt W ist.
 - (3) Die folgenden Rechnungen stellen die Lösung einer Aufgabestellung dar:

$$-\frac{1}{f'(4)} = \frac{2}{3}$$

$$f(4) = \frac{2}{3} \cdot 4 + b \Leftrightarrow b = -\frac{2}{3}$$

$$y = \frac{2}{3}x - \frac{2}{3}$$

Geben Sie eine passende Aufgabenstellung an.

(3 + 3 + 3 Punkte)

Ministerium für Schule und Bildung des Landes Nordrhein-Westfalen

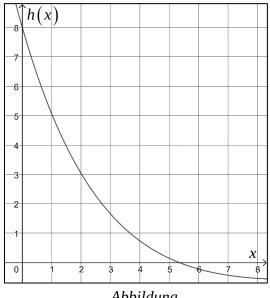
M GK Analysis B2 (CAS/MMS) Seite 2 von 3

Name: _____

- b) *p* ist eine quadratische Funktion mit den folgenden Eigenschaften:
 - ➤ Die Nullstellen von *p* stimmen mit den Nullstellen von *f* überein.
 - ➤ Der Scheitelpunkt des Graphen von *p* liegt auf *G*.
 - (1) Ermitteln Sie rechnerisch eine Gleichung von p. [Zur Kontrolle: $p(x) = -\frac{3}{8} \cdot x^2 + \frac{9}{4} \cdot x$]
 - (2) Es gilt f(0) = p(0) und f(6) = p(6).

 Die Graphen von f und g schließen über dem Intervall [0;6] genau zwei Flächenstücke ein.

Berechnen Sie $\int_0^6 (f(x) - p(x)) dx$ und interpretieren Sie das Ergebnis in Bezug auf die Größe der beiden Flächenstücke.


(4 + 3 Punkte)

Name:

In der *Abbildung* ist der Graph der Funktion *h* mit

$$h(x) = t(x) \cdot e^{-\frac{1}{4}x}$$
, $x \in \mathbb{R}$, dargestellt mit $t(x) = -\frac{3}{2} \cdot x + 8$ (siehe Seite 1).

Abbildung

Für jede reelle Zahl u mit $0 < u < \frac{16}{3}$ ist durch die Punkte P(0|0), $Q_u(2u|0)$ und $R_u(u|h(u))$ ein Dreieck PQ_uR_u gegeben.

- (1) Zeichnen Sie das Dreieck PQ_1R_1 in die Abbildung ein und begründen Sie, dass für den Flächeninhalt des Dreiecks $PQ_{u}R_{u}$ gilt: $A(u) = u \cdot h(u)$.
- (2) Berechnen Sie den Wert von u, für den der Flächeninhalt des Dreiecks PQ_uR_u maximal ist.
- (3) Ermitteln Sie die Werte von u, für die die Fläche des Dreiecks PQ_uR_u 40 % der Fläche einnimmt, die der Graph von h mit den Koordinatenachsen einschließt.

(4 + 2 + 3 Punkte)

Zugelassene Hilfsmittel:

- CAS/MMS (Computer-Algebra-System / modulares Mathematiksystem)
- Ländergemeinsame mathematisch-naturwissenschaftliche Formelsammlung oder inhaltsgleiche Formelsammlung oder das "Dokument mit mathematischen Formeln" (ab 2027 verpflichtend) oder mathematische Formelsammlung (bis 2026 zugelassen)
- Wörterbuch zur deutschen Rechtschreibung

Seite 1 von 5

Unterlagen für die Lehrkraft

Beispielaufgabe Abiturprüfung

(auf Grundlage des neuen Kernlehrplans vom 01.08.2023)

Mathematik, Grundkurs

Prüfungsteil B: Aufgaben mit Hilfsmitteln

1. Aufgabenart

Innermathematische Argumentationsaufgabe / Analysis

2. Aufgabenstellung¹

siehe Prüfungsaufgabe

3. Materialgrundlage

Teilaufgaben a) und b) nach: Abitur NRW 2021, WbK, Grundkurs, B2, CAS Teilaufgaben a)(3) und c): Weiterentwicklung durch QUA-LiS NRW

4. Bezüge zum Kernlehrplan

Die Aufgaben weisen vielfältige Bezüge zu Kompetenzbereichen und Inhaltsfeldern des Kernlehrplans auf. Im Folgenden wird auf Bezüge von zentraler Bedeutung hingewiesen.

Inhaltliche Schwerpunkte

Funktionen und Analysis

- Funktionen: ganzrationale Funktionen, Exponentialfunktionen
- Eigenschaften von Funktionen: Verlauf des Graphen, Definitionsbereich, Wertebereich, Nullstellen, Symmetrie, Verhalten für $x \to \pm \infty$
- Fortführung der Differentialrechnung: Produktregel, Extremwertprobleme, Rekonstruktion von Funktionstermen ("Steckbriefaufgaben")
- Integralrechnung: Produktsumme, orientierte Fläche, Bestandsfunktion, Integralfunktion, Stammfunktion, bestimmtes Integral, Hauptsatz der Differential- und Integralrechnung

5. Zugelassene Hilfsmittel

- CAS/MMS (Computer-Algebra-System / modulares Mathematiksystem)
- Ländergemeinsame mathematisch-naturwissenschaftliche Formelsammlung oder inhaltsgleiche Formelsammlung oder das "Dokument mit mathematischen Formeln" (ab 2027 verpflichtend) oder mathematische Formelsammlung (bis 2026 zugelassen)
- Wörterbuch zur deutschen Rechtschreibung

¹ Die Aufgabenstellung deckt inhaltliche drei Anforderungsbereiche ab.

6. Modelllösungen

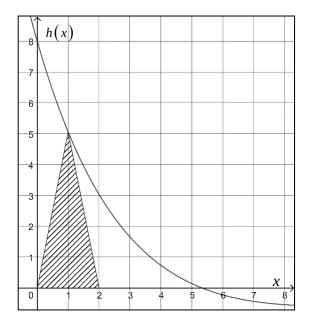
Die jeweilige Modelllösung stellt eine mögliche Lösung bzw. Lösungsskizze dar. Der gewählte Lösungsansatz und -weg der Prüflinge muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet (Bewertungsbogen: Zeile "Sachlich richtige Lösungsalternative zur Modelllösung").

Teilaufgabe a)

- (1) $f'(x) = 0 \Leftrightarrow x = 2 \lor x = 6$ Mit $f''(2) = -\frac{3}{2} < 0$, $f''(6) = \frac{3}{2} > 0$, f(2) = 4 und f(6) = 0 ist (2|4) ein Hochpunkt und (6|0) ein Tiefpunkt.
- (2) Der Graph von t ist eine Gerade mit der Steigung $-\frac{3}{2}$. $f'(4) = -\frac{3}{2}$ t(4) = 2 = f(4)
- (3) Aufgabenstellung: Berechnen Sie eine Gleichung der Normale an *G* im Punkt *W*.

Teilaufgabe b)

(1) Nullstellen: $f(x) = 0 \Leftrightarrow x = 0 \lor x = 6$ *x*-Koordinate des Scheitelpunkts der Parabel: $\frac{0+6}{2} = 3$


Ansatz:
$$p(x) = a \cdot x \cdot (x - 6)$$

 $p(3) = f(3) \Leftrightarrow a = -\frac{3}{8}$
 $p(x) = -\frac{3}{8} \cdot x \cdot (x - 6) \left[= -\frac{3}{8} \cdot x^2 + \frac{9}{4} \cdot x \right]$

(2)
$$\int_{0}^{6} (f(x) - p(x)) dx = 0$$

Die Inhalte der beiden Flächenstücke sind gleich.

Teilaufgabe c)

Länge der Grundseite: 2*u*

Höhe: h(u)

$$A(u) = \frac{1}{2} \cdot (2u) \cdot h(u) = u \cdot h(u)$$

(2)
$$A'(u) = 0$$
 liefert im betrachteten Bereich $u = \frac{20 - 4\sqrt{13}}{3} \left[\approx 1,86 \right]$

(3)
$$h(x) = 0 \Leftrightarrow x = \frac{16}{3}$$

$$A(u) = 0, 4 \cdot \int_{0}^{\frac{16}{3}} h(x) dx$$
 liefert $u \approx 1,332$ oder $u \approx 2,462$.

7.	Teilleistungen – Kriterien / Bewertungsbogen zur Prüfungsarbeit			
Name	e des Prüflings:	_ Kursbezeichnung:		
Schu	le:			

Teilaufgabe a)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK ²	ZK	DK
1	(1) berechnet die Koordinaten und die Art der Extrempunkte von G .	3			
2	(2) weist rechnerisch nach, dass der Graph der Funktion t die Tangente an G im Punkte W ist.	3			
3	(3) gibt eine passende Aufgabenstellung an.	3			
Sach	Sachlich richtige Lösungsalternative zur Modelllösung: (9)				
	Summe Teilaufgabe a)	9			

Teilaufgabe b)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) ermittelt rechnerisch eine Gleichung von <i>p</i> .	4			
2	(2) berechnet $\int_{0}^{6} (f(x) - p(x)) dx.$	1			
3	(2) interpretiert das Ergebnis in Bezug auf die Größe der beiden Flächenstücke.	2			
Sach	lich richtige Lösungsalternative zur Modelllösung: (7)				
	Summe Teilaufgabe b)	7			

EK = Erstkorrektur; ZK = Zweitkorrektur; DK = Drittkorrektur

Seite 5 von 5

Teilaufgabe c)

	Anforderungen	Lösungsqualität			
	Der Prüfling	maximal erreichbare Punktzahl	EK	ZK	DK
1	(1) zeichnet das Dreieck $PQ_{1}R_{1}$ in die $Abbildung$ ein.	2			
2	(1) begründet, dass für den Flächeninhalt des Dreiecks PQ_uR_u gilt: $A(u) = u \cdot h(u)$.	2			
3	(2) berechnet den Wert von u , für den der Flächeninhalt des Dreiecks PQ_uR_u maximal ist.	2			
4	(3) ermittelt die Werte von u , für die die Fläche des Dreiecks PQ_uR_u 40 % der Fläche einnimmt, die der Graph von h mit den Koordinatenachsen einschließt.	3			
Sachlich richtige Lösungsalternative zur Modelllösung: (9)					
	Summe Teilaufgabe c)	9			
	Summe insgesamt	25			

Die Festlegung der Gesamtnote der Prüfungsleistung erfolgt auf dem Bewertungsbogen einer weiteren Aufgabe aus dem Prüfungsteil B.