

Vorgaben für die Abiturprüfung 2025

in den Bildungsgängen des Beruflichen Gymnasiums
Anlagen D 1 – D 28
Profil bildendes Leistungskursfach

Elektrotechnik

Fachbereich Technik

1 Gültigkeitsbereich

Die Vorgaben für die Abiturprüfung im Fach Elektrotechnik gelten für folgende Bildungsgänge:

Elektrotechnische Assistentin/AHR Elektrotechnischer Assistent/AHR	APO-BK, Anlage D2
Allgemeine Hochschulreife (Elektrotechnik)	APO-BK, Anlage D15

Die Bildungsgänge sind dem Fachbereich Technik zugeordnet.

2 Vorgaben für die schriftliche Abiturprüfung

Grundlage für die Vorgaben der zentral gestellten schriftlichen Aufgaben der Abiturprüfung der (mindestens) dreijährigen AHR-Bildungsgänge des Beruflichen Gymnasiums (APO-BK, Anlagen D 1 – D 28) sind die verbindlichen Vorgaben der Bildungspläne zur Erprobung (RdErl. d. Ministeriums für Schule und Weiterbildung des Landes Nordrhein-Westfalen v. 30.6.2006):

Teil I: Pädagogische Leitideen,

Teil II: Didaktische Organisation der Bildungsgänge im Fachbereich Technik,

Teil III: Fachlehrplan Elektrotechnik.

Durch die Vorgaben für die schriftliche Abiturprüfung werden inhaltliche Schwerpunkte festgelegt. Diese inhaltlichen Schwerpunkte sind Konkretisierungen der in dem Fachlehrplan beschriebenen Fachinhalte, deren Behandlung im Unterricht als Vorbereitung auf die schriftliche Abiturprüfung vorausgesetzt wird. Durch diese Schwerpunktsetzungen soll sichergestellt werden, dass alle Schülerinnen und Schüler, die im Jahr 2025 das Abitur in den o. a. Bildungsgängen des Beruflichen Gymnasiums ablegen, über die Voraussetzungen zur Bearbeitung der zentral gestellten Aufgaben verfügen.

Der Fachlehrplan Elektrotechnik wurde 2013 durch die Ergänzende Handreichung WAKE (Weiterentwicklung der AufgabenKultur in Elektrotechnik) in Hinblick auf die Anforderungen der Abiturprüfung konkretisiert. Das Dokument "Ergänzende Handreichung zum Fachlehrplan Elektrotechnik" ist vom Schulministerium veröffentlicht unter www.standardsicherung.schulministerium.nrw.de/abitur-bk/.

Die Abiturvorgaben haben die Vorschläge von WAKE übernommen.

Die folgenden fachspezifischen Schwerpunktsetzungen gelten für das Jahr 2025. Sie stellen keine dauerhaften Festlegungen dar.

3 Verbindliche Unterrichtsinhalte im Fach Elektrotechnik im Fachbereich Technik für das Abitur 2025

3.1 Inhaltliche Schwerpunkte

Analoge Schaltungstechnik

Die folgenden Inhalte werden als bekannt vorausgesetzt. Dabei wird davon ausgegangen, dass die Schülerinnen und Schüler im Umgang mit Datenblättern vertraut sind.

Grundbauelemente

- LDR, VDR, PTC, NTC
- Relais
- Diode, Leuchtdioden, Photodiode, Brückengleichrichter, Z-Diode
- Thyristor, Diac, Triac
- Transistoren
 - o Bipolare Transistoren
 - o Unipolare Transistoren
 - Fototransistor
- Integrierte Bauelemente
 - Operationsverstärker (z.B. LM324)
 - o NE 555
 - Temperatursensoren (z.B. KTY 81-xx)
 - Optokoppler

Elektronische Grundschaltungen

- Einfache zusammengesetzte Schaltungen aus den Bauelementen
- Transistor als Schalter
- Transistor in Emitterschaltung
- Operationsverstärkerschaltungen (invertierender und nicht invertierender Verstärker, Integrator, Differenzierer, Spannungsfolger, Differenzverstärker, Summierverstärker, Schmitt-Trigger, Komparator)
- NE555 als monostabile und astabile Kippstufe
- Stromkonstantschaltung
- Spannungskonstantschaltung/Spannungsreglerschaltungen (mit Z-Diode, Längstransistor und Festspannungsregler (LM317, 78xx, 79xx))

Die Aufgabenstellungen können die Analyse, den Entwurf, die Dimensionierung und die Fehleranalyse beinhalten.

Grundschaltungen der Leistungselektronik

- Phasenanschnittssteuerung
- Gleichrichterschaltungen (E1U, B2U/C, B6U/C)

Gegenstand der Aufgabenstellungen zu den Grundschaltungen der Leistungselektronik ist die Analyse und die Bewertung.

Elektrische Maschinen und Regelungstechnik

Gegenstand der Prüfungsaufgaben kann die funktions- und sachgerechte Auswahl, Auslegung und Dimensionierung von elektrischen Maschinen in industrietypischen Anwendungssituationen sein.

Die folgenden Inhalte werden als bekannt vorausgesetzt. Dabei wird davon ausgegangen, dass die Schülerinnen und Schüler im Umgang mit Datenblättern und Typenschildern vertraut sind.

Maschinentypen

- Einphasen-Transformator
- Schrittmotor
- Drehstromasynchronmotor mit Kurzschlussläufer
- Gleichstrommotor als Energiewandler

Eigenschaften und Einsatz elektrischer Maschinen

- Übersetzungsverhältnis und Wirkungsgrad von Transformatoren
- Hochlauf-/Belastungskennlinien
- Kenngrößen von Motoren (Bemessungsstrom, Bemessungsdrehzahl, Bemessungsleistung, Bemessungsdrehmoment, Wirkungsgrad, Leistungsfaktor, Bemessungsspannung, Bemessungsfrequenz, Anlaufstrom, Anlaufmoment, mechanische Leistung)
- Ansteuerung elektrischer Maschinen
 - Schützsteuerung (einfacher Last- und Steuerstromkreis für Ein-/Aus, Stern/Dreieck, Drehrichtungsänderung)
 - Motorschutzschalter
 - o Motorvollbrücke bei Gleichstrommaschinen (z. B. L298)

Gegenstand der Aufgabenstellungen in der Regelungstechnik können die Analyse und die Synthese von Regelkreisen mit stetigen und unstetigen Reglern sein. Die elektronische Realisierung der Regeleinrichtung und eventueller Pegelanpassungen erfolgt mit Operationsverstärkerschaltungen.

<u>Grundbegriffe</u>

- Vollständiger, einschleifiger Regelkreis
- Größen der Regelungstechnik:

Rückführgröße r, Stellgröße y, Regelgröße x, Führungsgröße w, Reglerausgangsgröße m, Regeldifferenz e, Störgröße z

Regelstrecken:

- Blockdarstellung Regelstrecke als Übertragungsglied
- Sprungantwortverhalten
- Streckenarten (P, I, P-T₁, P-T₂, P-T_n, P-T_t, P-T_n-T_t)

<u>Regler</u>

- stetige Regler (P-, D-, I- Regler und Kombinationen aus diesen)
- unstetige Regler (Zweipunktregler)
- Übertragungsverhalten
- Eignung von Reglertypen für Regelstrecken

Einstellen von Reglern

- Anregelzeit
- Ausregelzeit
- Max. Überschwingweite
- Einstellregeln nach Ziegler und Nichols
- · Einstellregeln nach Chien, Hrones und Reswick

Digital- und Mikrocontrollertechnik

Gegenstand der Prüfungsaufgaben sind die Analyse und der Entwurf von Schaltnetzen und Schaltwerken. Es kommen integrierte Schaltelemente aus den TTL-(74xx) und CMOS-(40xx) Bauteilfamilien zum Einsatz. Dabei wird davon ausgegangen, dass die Schülerinnen und Schüler im Umgang mit Datenblättern beider Technologien vertraut sind.

Die folgenden Inhalte werden als bekannt vorausgesetzt.

Grundbausteine

- Digitale Grundbauelemente: AND, OR, NAND, NOR, XAND, XOR, NOT
- Bistabile Kippstufen: RS-FF, JK-FF, D-FF
- 8:1 Multiplexer (z. B. 74151)
- 1:8 Demultiplexer (z. B 74138)
- 4-bit Binary Counter (z. B 74191)
- 8-bit Shift Register (z. B. 74165)
- Schmitt-Trigger (z. B. 7414)
- NE555 als Taktgeber
- 7-Segmentanzeige
- BCD/7-Segment Decoder

Darstellungsformen

- Normdarstellung in IEC-Norm
- Logiktabellen/Wahrheitstabellen
- Disjunktive-Normalform
- Impuls-/Zeitablaufdiagramme
- Funktionsgleichungen
- Logikplan
- Zahlensysteme (Dezimal, Hexadezimal, Dual)

Die Aufgabenstellungen in der Mikrocontrollertechnik beziehen sich auf ein Minimalsystem aus der 8051-Familie (siehe Seite 8).

Die Erzeugung und Auswertung digitaler und analoger Signale erfolgt über I/O-Ports. Bei byteadressierbaren SFR sind geeignete Maskierungstechniken anzuwenden.

Die Aufgabenstellungen beziehen sich auf die Planung (z. B. mit PAP), Erweiterung und Analyse (z. B. Fehleranalyse, Kommentierung) von modularen Mikrocontroller-Programmen. Die Programmierung erfolgt in C. Eigene Bibliotheken sind nicht zu erstellen. Die Anbindung der Peripherie ist zu berücksichtigen.

Hardware des Mikrocontrollers

- Grundsätzliche Bestandteile eines Mikrocontrollers (CPU, Programm- und Datenspeicher, Takterzeugung)
- Ausgewählte On-Chip-Peripherie:
 - Digitale Ein-/Ausgaberegister (Ports)
 - Timer
 - o Analog-Digital Wandlereinheit mit 8-Bit Auflösung
- Datenblatt Blockschaltbilder von Funktionseinheiten des Mikrocontrollers

An das in der Prüfung verwendetet Mikrocontrollersystem aus der 8051-Familie werden bestimmte Mindestanforderungen gestellt. Dabei kann das im Unterricht verwendete System in Teilen höheren Anforderungen gerecht werden.

Eigenschaften des Minimalsystems (siehe auch Seite 7):

- 4 digitale, 8-Bit breite I/O-Ports, byte- oder bitadressierbar
- AD-Umsetzer mit mindestens 8-Bit Auflösung im Bereich von 0-5 V
- 2 unabhängige, interruptfähige 16-Bit Timer/Counter, mindestens 1 Counter mit externem Zähleingang.
- 2 externe Interrupts

Einfache Grundschaltungen mit µC

Eingabe

- Schalter/Taster
- Potentiometer
- Analoge Signalgeber

<u>Ausgabe</u>

- LED- und 7-Segment-Anzeigen
- Transistor als Schalter

Programmierung der Mikrocontroller in der Programmiersprache "C"

- Grundsätzlicher Aufbau eines C-Programms
- Kommentardarstellung
- Deklaration und Initialisierung von einfachen Variablen
- Anwenden von Rechenoperatoren (Addition, Subtraktion, Multiplikation, Division und Modulo)
- Bitoperationen (UND, ODER, Exklusiv ODER, Negation, Bitverschiebung und Maskierung)
- Logikfunktionen (UND, ODER, NICHT)
- Vergleichsoperatoren (größer, kleiner und gleich)
- Verzweigungen, Fallunterscheidungen und Schleifen
- Umgang mit Funktionen
 - Funktionsprototypen
 - o Aufruf von Funktionen mit Parameterübergabe und Rückgabewert
- Array (eindimensionale Felder)

Auf den folgenden Seiten werden die Hardwarekomponenten Ein- und Ausgabeports, Interrupt, AD-Umsetzer und Timer/Counter 0 und 1 detailliert dargestellt.

Fett dargestellte Register oder Bitnamen können im Programmcode direkt verwendet werden.

Ein- und Ausgabeports

P0 (Port 0, bitadressierbar)									
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0		
	P1 (Port 1, bitadressierbar)								
P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0		
		P2	(Port 2, bit	tadressierb	ar)				
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0		
P3 (Port 3, bitadressierbar)									
P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0		

Interrupt-Service-Routine in der Programmiersprache C

Um in der Programmiersprache C einen Interrupt zu bearbeiten, wird eine besondere Funktion geschrieben, die Interrupt- Service-Routine (ISR).

Der Funktionskopf enthält das Schlüsselwort "interrupt" und eine Interruptnummer. Der Funktionsrumpf hat keine Besonderheiten. Allgemeiner Aufbau der ISR:

Für jede Interruptanforderung muss eine eigene ISR geschrieben werden. Der Funktion werden keine Parameter übergeben.

Liste der Interruptnummern

Interruptnummer für C-Programmierung	Interrupt-Quelle	Request-Flag	Vektoradresse
0	Externer Int 0	IE0	0003h
1	Timer-0 Int	TF0	000Bh
2	Externer Int 1	IE1	0013h
3	Timer-1 Int	TF1	001Bh

Interrupt

IE (Interrupt Enable-Register, bitadressierbar)							
EA				ET1	EX1	ET0	EX0

- EA Aktivierungsbit für alle Interrupts (enable all)
 - 0 Alle Interrupts sind deaktiviert.
 - Aktivierung aller Interrupts, es gilt das individuelle Freigabebit des jeweiligen Interrupts (EXx und ETx, s. o.).
- EX0 Freigabebit des externen Interrupts 0 (an Portpin 3.2)
- ET0 Freigabebit des Timer 0 Interrupts
- EX1 Freigabebit des externen Interrupts 1 (an Portpin 3.3)
- ET1 Freigabebit des Timer 1 Interrupts

Für die Freigabebits gilt:

- 0 Interrupt ist deaktiviert.
- 1 Interrupt ist aktiviert.

TCON (Conditionsregister, bitadressierbar)							
TF1		TF0		IE1	IT1	IE0	IT0

TFx Timer Überlauf-Flag von Timer 0 bzw. Timer 1. Das Timer-Überlauf-Flag wird auch zur Auslösung eines Timer-Interrupts verwendet.

Für die einzelnen Überlauf-Flags gilt:

- kein Timer-Überlauf, das Bit wird beim Einsprung in die Interrupt-Routine automatisch gelöscht.
- 1 Timer-Überlauf, das Bit wird beim Timer-Überlauf automatisch gesetzt.

Die externen Interruptquellen IE0 und IE1 können so programmiert werden, dass sie zustandsgesteuert oder flankengesteuert reagieren. Dies geschieht durch das Setzen oder Löschen der Bits IT0 bzw. IT1 im Register TCON.

- IEx Interrupt-Request-Flag des externen Interrupts 0 bzw. 1.
- Tx Interrupt-Select Bit, Selektionsbit für den externen Interrupt 0 bzw 1.

Es gilt folgende Zuordnung:

- ITx = 0 Interrupt reagiert zustandsgesteuert.
 IEx bleibt gesetzt, so lange LOW-Pegel anliegt.
- ITx = 1 Interrupt reagiert auf die negative Flanke, IEx wird bei Einsprung in die Interrupt-Routine automatisch gelöscht.

A/D-Umsetzer

ADDAT (Ergebnisregister, byteadressierbar)

Ergebnisregister. Der digitalisierte Wert wird hier abgelegt

ADCON (Modusregister, bitadressierbar)							
		ADEX	BSY	ADM	MX2	MX1	MX0

ADEX Wandler-Startverhalten festlegen

- 0 interner Wandlerstart durch beschreiben von DAPR
- 1 externer Wandlerstart durch H/L-Flanke an P3.0

BSY Wandler-Status

- 0 Wandlung fertig, Ergebnis liegt im ADDAT-Register
- 1 Wandlung läuft

ADM Wandler-Modus

- 0 eine Wandlung
- 1 kontinuierliche Wandlung

MX2-MX0 Wahl des analogen Eingangs von AN0 bis AN7 mit 000 bis 111

(MX0 = LSB)

DAPR (D/A Programmregister, byteadressierbar)					
oberer Wert	unterer Wert				

Der Einstellwert für das DAPR-Register setzt sich aus einem oberen und einem unteren Wert zusammen. Damit werden die Spannungsgrenzen für die AD-Umsetzung eingestellt. (s. Tabelle Einstellgrenzen für das DAPR-Register)

Einstellgrenzen für das DAPR-Register

Stufe	oberer Wert in Volt	unterer Wert in Volt	Stufe	oberer Wert in Volt	unterer Wert in Volt
0	5,0	0,0	8	2,5	2,5
1	-	0,3125	9	2,8125	2,8125
2	-	0,625	10=A _H	3,125	3,125
3	-	0,9375	11=B _H	3.4375	3.4375
4	1,25	1,25	12=C _H	3,75	3,75
5	1,5625	1,5625	13=D _H	4,0625	-
6	1,875	1,875	14=E _H	4,375	-
7	2,1875	2,1875	15=F _H	4,6875	-

Durch das Beschreiben des DAPR-Registers wird der Wandler intern gestartet.

Beispiel: Im Programmcode startet die Zeile "DAPR = $0 \times A6$; " den AD-Wandler zur Messung im Spannungsbereich zwischen 1,875 V und 3,125 V

Timer / Counter 0 und 1 (Zeitgeber / Zähler)

TCON (Conditionsregister, bitadressierbar)							
TF1	TR1	TF0	TR0				

TFx Timer Überlauf-Flag. Das Flag wird beim Überlauf automatisch gesetzt. Bei Abfrage im Programmzyklus muss es durch das Programm zurückgesetzt werden.

Das Timer-Überlauf-Flag kann auch zur Auslösung eines Timer-Interrupts verwendet werden.

TRx Timer Startbit

1 Timer Start

0 Timer Stop

TMOD (Modusregister, byteadressierbar)							
Gate	Gate C/T M1 M0 Gate C/T M1 M0						
Timer 1					Tim	er 0	

Gate interne oder externe Timerfreigabe

- 0 interne Freigabe über TR0 bzw. TR1
- externe Freigabe über ein HIGH-Signal an Portpin P3.2 (Timer 0) bzw. P3.3 (Timer 1), wenn gleichzeitig gilt: TRx = 1
- C/T Einstellung als Zähler oder Zeitgeber
 - 0 Funktion als Zeitgeber/Timer
 - 1 Funktion als Zähler/Counter
- M1 M0 Timermodi einstellen
 - 0 1 Modus 1: THx und TLx bilden einen 16-Bit-Timer/Counter
 - 1 0 Modus 2: TLx bildet einen 8-Bit Auto-Reload-Timer/Counter. Bei Überlauf

wird der in THx stehende Wert in TLx kopiert. THx bleibt

unverändert.

TH0 (Highbyte Zählregister Timer 0, byteadressierbar)
TL0 (Lowbyte Zählregister Timer 0, byteadressierbar)
TH1 (Highbyte Zählregister Timer 1, byteadressierbar)
TL1 (Lowbyte Zählregister Timer 1, byteadressierbar)

- THx Highbyte des Startwertes für einen 16-Bit-Timer/Counter
 - Auto-Reload-Wert für einen 8-Bit-Timer/Counter
- TLx Lowbyte des Startwertes für einen 16-Bit-Timer/Counter
 - Startwert bei einem 8-Bit Auto-Reload-Timer/Counter

3.2 Medien/Materialien

keine

3.3 Formale Hinweise

Die Prüfung erfolgt in schriftlicher Form. Der Einsatz von Experimentierhilfsmitteln ist nicht zugelassen.

3.4 Hinweise zu den Aufgabenstellungen

In der Ergänzenden Handreichung WAKE (Kapitel 3) sind acht Fachmethoden definiert, von denen sechs Eingang in die Abiturvorgaben gefunden haben: Schaltungsanalyse, Schaltungsentwurf, Dimensionieren, Programmentwurf, Programmanalyse und Arbeiten mit Diagrammen.

Jede dieser Fachmethoden wird durch ein Regelwerk beschrieben (s. WAKE, Kapitel 3), das bei Anwendung der jeweiligen Fachmethode vollständig angewendet wird. In der Prüfung wird die verlangte Anwendung einer Fachmethode durch Verwendung eines entsprechenden Operators (vgl. Operatorenliste) kenntlich gemacht. Bei der Fachmethode "Arbeiten mit Diagrammen" werden sämtliche Arbeiten mit grafischen Darstellungen in Diagrammen zusammengefasst. Die Fachmethode besitzt deshalb keinen eigenständigen Operator.

Die Aufgaben in den zentral gestellten Prüfungen werden mit Hilfe von Operatoren formuliert.

In der folgenden Tabelle werden die Operatoren definiert, durch Beispiele dokumentiert und den Anforderungsbereichen (AFB I, II und III) zugeordnet. Die konkrete Zuordnung erfolgt immer im Kontext der Aufgabenstellung, wobei eine eindeutige Trennung der Anforderungsbereiche nicht immer möglich ist.

Spätestens in der Qualifikationsphase sollen die Operatoren in den Klausuren und schriftlichen Übungen verwendet werden, um die Schülerinnen und Schüler auf die Abiturprüfung vorzubereiten.

Operator	AFB	Definition	Beispiel
eintragen	I	Werte und Größen in eine vorgegebene Darstellungsform eintragen	Tragen Sie die Messwerte in die Tabelle ein.

Operator	AFB	Definition	Beispiel
markieren, kennzeichnen	I	ohne weitere Erläuterung kennzeichnen	Markieren Sie den Stern- Dreieck-Umschaltpunkt durch ein farbiges Kreuz in der Hochlaufkennlinie.
nennen, benennen	I	ohne weitere Erläuterung aufzählen	Nennen Sie zwei typische Anlassverfahren. Benennen Sie die verschiedenen Komponenten eines Regelkreises.
berechnen	I, II	Ergebnisse von einem Ansatz ausgehend durch Rechenoperationen gewinnen	Berechnen Sie den Anlaufstrom.
beschreiben	Ι, ΙΙ	Sachverhalte oder Zusammenhänge strukturiert und fachsprachlich mit eigenen Worten verständlich wiedergeben	Beschreiben Sie die Auswirkungen des Fehlers einer Leiterunterbrechung zwischen dem Emitter des Transistors und Masse.
darstellen	I, II	Sachverhalte oder Zusammenhänge strukturiert und mit graphischen Mitteln wiedergeben	Stellen Sie die Methode des Programmentwurfs dar.
ermitteln, bestimmen	I, II	einen Zusammen- hang oder eine Lösung finden und das Ergebnis formulieren	Ermitteln Sie den maximal zulässigen Laststrom.

Operator	AFB	Definition	Beispiel
ordnen, zuordnen	1, 11	Äquivalenz zwischen verschiedenen Darstellungsformen eines technischen Sachverhaltes angeben	Ordnen Sie den verschiedenen Blöcken die Bauelemente der Schaltung zu.
skizzieren	1, 11	die qualitativen Eigenschaften eines Objektes oder Sachverhaltes graphisch darstellen (auch Freihandskizze möglich)	Skizzieren Sie die Sprungantwort des PI- Reglers.
zeichnen	1, 11	einen technischen Sachverhalt unter Beachtung der relevanten Größen- ordnung unter Einhaltung von Normen darstellen	Zeichnen Sie in das vorgegebene Diagramm die Ladekurve des Kondensators von 0 bis 10 s ein.
erörtern	II	einen eigenen Standpunkt argumentativ darlegen	Erörtern Sie den Einsatz dieses Bauteils unter wirtschaftlichen und technologischen Gesichtspunkten.
realisieren	II	einen technischen Sachverhalt unter Einhaltung einer techn. Vorgabe erfüllen.	Realisieren Sie unter Verwendung der angegebenen Bauelemente und Grundschaltungen eine Schaltung, die die angegebene Stromessfunktion erfüllt.

Operator	AFB	Definition	Beispiel
analysieren von Schaltungen (elektrotechnische Methode nach WAKE)	11, 111	Systematische und nachvollziehbare Beschreibung der Funktionsstruktur einer Schaltung	Analysieren Sie die Schaltung des astabilen Multivibrators.
analysieren von Programmen (elektrotechnische Methode nach WAKE)	11, 111	Systematische und nachvollziehbare Beschreibung der Ablaufstruktur eines Programmes	Analysieren Sie das im Listing angegebene Programm.
auswerten	II, III	Datenblattinformation, Technische Informationen, Messergebnisse, Einzelergebnisse in einen Zusammen- hang stellen und gegebenenfalls zu einer Gesamtaussage zusammenführen	Werten Sie die Datenblätter und die gegebenen Messwerte hinsichtlich Dimensionierung der Schaltung in Abb.1 aus.
begründen	II, III	Sachverhalte auf Regeln und Gesetzmäßigkeiten zurückführen	Begründen Sie, warum bei dieser Schaltung eine Mikrocontrollerschaltung nicht sinnvoll eingesetzt werden kann.
beurteilen, bewerten	II, III	zu einem Sachverhalt ein selbstständiges Urteil unter Verwendung von Fachwissen und Fachmethoden formulieren	Beurteilen Sie, ob das eingesetzte Netzteil die Anforderungen an die Spannungsversorgung erfüllt.

Operator	AFB	Definition	Beispiel
dimensionieren (elektrotechnische Methode nach WAKE)	II, III	systematische und nachvollziehbare Vorgehensweise bei der Auslegung und Bestimmung der Bauelemente einer Schaltung	Dimensionieren Sie die Bauelemente des PID- Reglers.
erläutern, erklären	II, III	einen Sachverhalt so darlegen, dass er verständlich wird	Erläutern Sie die Notwendigkeit des Anlaufverfahrens.
erstellen	II, III	Sachverhalte oder Werte in vorgegebener Form angeben	Erstellen Sie das u(t)- Diagramm. Erstellen Sie die Zuordnungstabelle für das Programm.
nachweisen	II, III	einen Sachverhalt oder eine Aussage durch Berechnung, (mathematischer) Herleitung und logischer Begründung nachvollziehbar bestätigen	Weisen Sie nach, dass mit den angegebenen Reglerkenndaten die geforderten Stabilitätskriterien für die Regelung des Wasserstandes erfüllt werden.
prüfen, überprüfen	II, III	Sachverhalte oder Aussagen an Fakten oder innerer Logik messen oder eventuelle Wider- sprüche aufdecken	Überprüfen Sie die Dimensionierung der Schaltung hinsichtlich der Strombelastung der verwendeten Bauelemente.
vergleichen	II, III	Unterschiede und Gemeinsamkeiten von Sachverhalten gewichtend einander gegenüberstellen	Vergleichen Sie die beiden Anlassverfahren hinsichtlich des Drehmomentverhaltens des Motors.

Operator	AFB	Definition	Beispiel
entwerfen einer Schaltung (elektrotechnische Methode nach WAKE)	III	schrittweiser Entwurf einer Schaltung zu einer dimensionierungs- fähigen Schaltung	Entwerfen Sie die Schaltung für das 5V-Netzteil.
entwerfen eines Programms (elektrotechnische Methode nach WAKE)	III	systematische und nachvollziehbare Beschreibung der Ablaufstruktur eines Programms	Entwerfen Sie für den Taschenrechner das Unterprogramm "Addieren".

4 Bearbeitungszeit für die schriftliche Abiturprüfung

Es gelten die Vorgaben der APO-BK, § 17 (2) Anlage D.

Die Bearbeitungszeit beträgt 270 Minuten.

5 Hilfsmittel

- Elektrotechnisches Tabellenbuch (zur Auswahl):
 - Friedrich Tabellenbuch Elektrotechnik/Elektronik;
 Bildungsverlag EINS
 - Tabellenbuch Elektrotechnik;
 Verlag Europa-Lehrmittel
 - Elektrotechnik;Verlag Handwerk + Technik GmbH
 - Elektronik Tabellen. Betriebs- und Automatisierungstechnik;
 Westermann Schulbuchverlag.
 - o vergleichbare Tabellenbücher der Elektrotechnik
- Graphikfähiger Taschenrechner (GTR) oder Computeralgebrasystem (CAS)

6 Hinweise zur Aufgabenauswahl durch die Lehrkraft/ den Prüfling

Eine Aufgabenauswahl durch die Schule ist nicht vorgesehen.

Eine Aufgabenauswahl durch den Prüfling ist ebenfalls nicht vorgesehen.